Imaging the porcine vertebral endplate with desktop micro-computed tomography

Dena Burnett, David Cooper, JD Johnston, Steve Milosavljevic

SRS Research Conference, September 22, 2019

- Low back pain (LBP) is one of the most prevalent and debilitating musculoskeletal (MSK) disorders in Canadian rural workforce^[1,2]
- Prevalence of LBP and neck pain is associated with exposure to high levels of WBV and mechanical shocks^[3]
- Daily exposure to high levels of whole body vibration (WBV) and mechanical shocks often exceeds ISO recommended daily vibration dose values (VDV)^[4]

- Pain is a complex condition which includes biological, structural, and psycho-social factors
 - Associations between LBP and structural spine damage^[1,2]
- Literature evaluating spinal damage related to WBV exposure has focused on the intervertebral disc^[3-6]
- Literature evaluating structural properties of the vertebra have focused on the vertebral body^[7,8]

What about the vertebral endplate?

[1] Wahlström, Int Arch Occup Environ Health, 2018; [2] Dudil, Eur Spine J, 2016; [3] Bovenzi, Med Lav, 2017; [4] Gregory, Spine, 2011; [5] Yates, Spine, 2011; [6] Adams, Spine, 2000; [7] Jackman, J Orthop Res, 2014; [8] Kummari, Calcif Tissue Int, 2009.

- Proposition that endplate damage is a major initiating factor for disc degeneration^[1] and subsequent LBP^[2,3]
 - Important as the intervertebral disc is immuneprivileged^[4], avascular^[5], and aneural^[6]
 - Disturbance in the vertebral endplate environment could precede intervertebral disc degeneration
- Existence of damage to the vertebral endplate during WBV and mechanical shock exposure is currently unknown, thus the minimum exposure needed to induce endplate damage is also unknown

[1] Rade, Spine, 2018; [2] Dudil, Eur Spine J, 2016; [3] Herlin, PLOS One, 2019; [4] Wang, Int J Clin Exp Pathol, 2014; [5] Grunhagen, J Bone Joint Surg, 2006; [6] Urban, Arth Res Therap, 2003.

Possible to use micro-computed tomography (micro CT) to evaluate the structural properties of the vertebral endplate^[1]
Endplate
VOI segmentation

But...there is a need for a reliable, robust technique to evaluate the entire endplate surface and underlying trabecular bone to determine likely sites for damage initiation under WBV

[1] Rutges, Osteoarth Cartil, 2011; [2]

Objective

Use micro-computed tomography to develop reliable image-based outcomes to evaluate bone structural properties at the vertebral endplate

- Acquired 4 porcine cervical spines from a common source
- Divided the spine into functional spinal units (FSU) comprised of either C3-4 or C5-6 then removed surrounding muscle tissue, neural arch and spinal processes
- Further dissected each FSU into individual vertebrae (C3 through C5) leaving the annulus intact on the imaged vertebral endplate surface

- Individual vertebrae were imaged with desktop micro-CT (SkyScan 1172; Bruker; Konich, Belgium)
 - 100kVp, 100uA, 180° rotation with steps of 0.3°,
 ~55min scan time, 4-frame averaging, 0.5mm Al filter,
 26.6µm isotropic resolution

[1] Abramoff, Biophotonics, 2004; [2] Rasband, US National Institutes of Health, 1997.

- Individual vertebrae were imaged with desktop micro-CT (SkyScan 1172; Bruker; Konich, Belgium)
 - 100kVp, 100uA, 180° rotation with steps of 0.3°,
 ~55min scan time, 4-frame averaging, 0.5mm Al filter,
 26.6µm isotropic resolution
- Raw images were reconstructed with NRecon 1.6.4 (SkyScan) and visualized using ImageJ^[1,2] with postprocessing and analysis using MatLab (MathWorks; Natick, USA) and Analyze 10.0 (Mayo Foundation; Rochester, USA)

Precision Errors

- 14 specimens, 3 repeated scans after repositioning (42 total scans, 28 DOF)^[1]
- Root mean square coefficient of variation (CV%)^[1,2] and intraclass correlation coefficient (ICC)
- Inferior endplates of C3 and C5 (n=7 samples, 21 total scans)
- Superior endplates of C4 and C6 (n=7 samples, 21 total scans)

Inferior Surface (C5)

Anterior

Superior Surface (C6)

Posterior

View in transverse plane (along z-axis)

Anterior

Anterior

26.6 µm resolution

Anticipated Structural Outcomes^[1]

- Bone volume fraction (BV/TV)
- Cortical porosity
- Cortical porosity distribution
- Endplate thickness and area
- Trabecular porosity
- Trabecular thickness
- Trabecular number
- Degree of anisotropy

Anticipated Regional Outcomes

- Anterior and posterior
- Sub-nucleus and sub-annulus

Anticipated Depth Analysis

- Endplate cortical thickness
- Vertebral endplate (1.5mm depth from the endplate surface)
- Vertebral trabecular bone (1.5mm to 5mm depth from endplate surface)

Anticipated Depth Analysis

- Endplate cortical thickness
- Vertebral endplate (1.5mm depth from the endplate surface)
- Vertebral trabecular bone (1.5mm to 5mm depth from endplate surface)

Anticipated Depth Analysis

- Endplate cortical thickness
- Vertebral endplate (1.5mm depth from the endplate surface)
- Vertebral trabecular bone (1.5mm to 5mm depth from endplate surface)

Next Steps

- Post-processing^[1,2]
 - Data reduction and image cropping
 - ► Filtering
 - Thresholding endplate surface, cortical bone, and trabecular bone
 - Masking and fitting splines to endplate surface
 - Isolate depths and regions at endplate surface
 - Structural property analysis

Anticipated Applications

Outcomes will provide imagebased targets to quantify structural damage of vertebral endplate in cadaveric mechanical WBV and impact shock testing

Anticipated Applications

Outcomes will provide guidance in determining additional image analysis including using contrast agents and Synchrotron-CT

Thank-you

- Dr. Stephan Milosavljevic
- Dr. David Cooper and CooperLab
- Dr. JD Johnston and MOBIL Lab
- Arnold Wiebe (Kindersley Packers, Kindersley, SK)

School of Rehabilitation Science

College of Medicine Medicine.usask.ca

[1] McMillan, J Agromed, 2015; [2] Essien, J Occup Environ Med, 2016; [3] Milosavljevic, Ann Occup Hyg, 2012; [4] Milosavljevic, Int J Indus Ergon, 2012; [5] Kociolek, Int J Indus Ergon, 2018.