

Care for the Person with Amputation Prosthetic Innovation

Audrey Zucker-Levin PhD, PT, MBA, GCS Emeritus School of Rehabilitation Science

- Upon completion of this module, the attendee will be able to identify:
- Current prosthetic innovation and application
- Sock management
- Trouble shooting

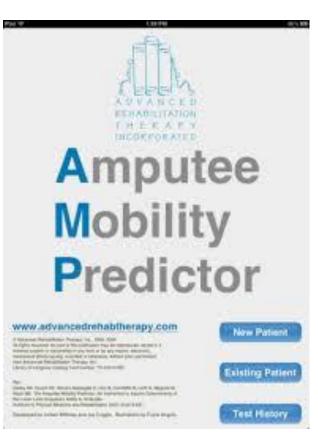
- Prosthesis –vs- Prosthetic
- **\$\$-\$\$\$**
- Inadequate prosthetic training

Matching the prosthesis to the wearer is important.

Prosthetic Prescription

- Physical Function
 - Strength
 - Endurance
 - Range of motion
 - Balance
- Alignment
- Inherent component Stability

Cognitive function


A prosthesis must:

- Fit comfortably
 - Snugly
 - Proprioception
 - Control
- Provide Stability
- Allow Mobility
- Easy to Don/Doff

Amputee Mobility Predictor

- AMPPRO
- AMPnoPRO
- AMP-B

	AMPPro	AMPnoPro
ко	N/A	0-8
K1	15-26	9-20
К2	27-36	21-28
КЗ	37-42	29-36
К4	43-47	37-43

Sock Management

- Protect skin
- Absorb/wick perspiration
- Cushion impact
- Take up volume
- Ply
- Appropriate number
- Worn outside liners

Sheath

- Thin nylon
- Worn under socks
- Helps keep skin dry

Insufficient Ply

Trans-Tibial

Trans-Femoral

Figure 1. This figure shows the transtibial skeletal system and the pressure areas that can occur if the residual limb shrinks and requires a sock to replace the volume loss.

Figure 2. This figure shows the pelvic and transfemoral skeletal system and the pressure areas that can occur if the residual limb shrinks and requires a sock to replace the volume loss.

Excessive Ply

Trans-Tibial

- Pressure
 - Tibial crest
 - Fibular head
- Lack distal contact

Trans-Femoral

- Pressure
 - Greater trochanter
- Lack distal contact
- Create adductor roll

Check Socket

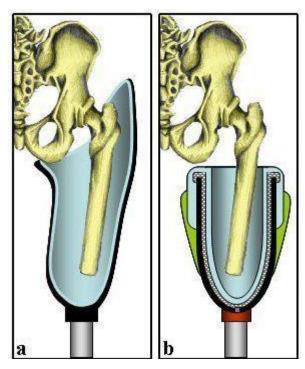
Pe-Lite

- Inner socket
- Soft
- Cushion inner liner
- Socks worn under Pe-Lite

Prosthetic Components

- Socket
- Suspension
- Shank
- Terminal Device
 - Foot
 - Blade
 - Hand
 - Hook
- Articulations

- Add ons
 - Liners
 - Rotation unit
 - Shock absorbers
 - Computers
 - Motors
 - Specialized TD's


Mobility Grades

- K0: prosthesis not indicated
- K1: Indoor
- K2: restricted outdoor
- K3: unrestricted outdoor
- K4: unrestricted outdoor with especially rigorous demands.

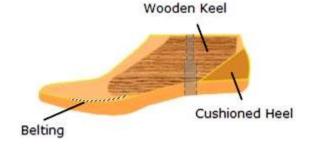
Trans-femoral socket design

Ischial Containing –vs- Quadrilateral

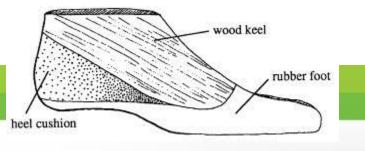
Trans-tibial socket design

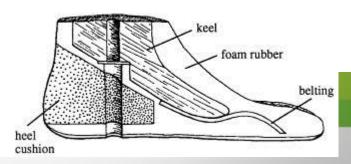
Patellar Tendon Bearing PTB -vs- Total Surface Bearing TSB

Prosthetic Feet

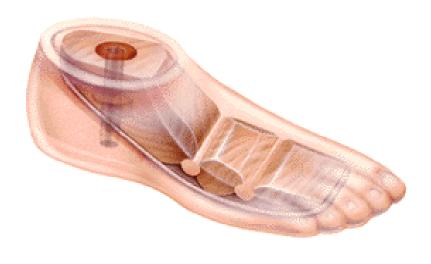

- SACH
- Flexible Endoskeleton
- Single Axis
- Multiaxial
- Dynamic response
- Multiaxial dynamic response

- Sport specific
- Microprocessor
- Powered
- Vertical shock pylon
- Axial rotation unit
- Heel height adjustment

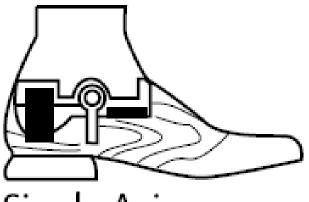



SACH

- Low maintenance
- Light weight
- Inexpensive
- Heel height
- Durable
- Many sizes and heel heights



Flexible Endoskeleton



- Greater PF/DF
- Inversion/eversion
- Uneven surfaces
- More expensive
- Heavier
- More maintenance

Single Axis

- DF/PF
- Heavier
- More maintenance
- Rubber bumpers control movement
 - Post controls PF
 - Ant controls DF

Single Axis

Multi Axis

- Sagittal and frontal plane movement
- Absorbs torque
- Uneven surfaces

- More maintenance
- **\$**
- Noisy
- Heavy

Dynamic Response

DERS

- Short leaf spring
- Long leaf spring
- Absorbs energy
- Keel deforms at heel strike
- Returns energy for propulsion
- Improved endurance?

Knees

- Manual lock knee (K1)
- Weight activated stance control (K1-K2)
- Polycentric (K2-K3)
- Fluid Friction (hydraulic/pneumatic) (K3-K4)
- Microprocessor (K3-K4)

Prosthetic Knees

Liners (Cushion/Suspension)

- Silicons
- Polyurethane
- Co-polymer

- Do not pull on
- Fully deflect liner
- Roll on
- Wash daily (weekly)
- On stand to dry
- Alternate daily
- Check for damage
- Remove air bubbles

Liners

- Silicone
 - Fleshy limbs
 - May use...Shuttle-lock suspension
 - Durable
 - Easy to clean
 - Low to moderate activity level

Liners

- Polyurethane
 - Flow characteristics
 - Vacuum suspension
 - Suction suspension
 - TSB
 - Low to high activity levels

Liners

- Copolymer
 - Additives
 - Dry skin
 - Pin or suction suspension
 - TSB
 - Low activity level

Liner Liner

- Not a sock
- Worn under liner
- Helps with perspiration

- Mechanical
- Vacuum
- Shuttle lock
- Suction

- Must match activity level
- Comfortable
- Retain limb
 - Minimize pistoning
- Proprioception

- Mechanical
 - Supracondylar cuff
 - Brim contours
 - PTBSC
 - PTBSCP
 - TESS

Shuttle Lock

- Liner with pin
- Pin inserts into lock
- Release button
- Socks go on outside...socks have holes

Lanyard system

Sealing Sleeve

- Vacuum suspension
- Suction suspension
- Goes over prosthesis
- Rolls onto leg
- Creates an airtight seal

https://www.ottobockus.com

- Vacuum
 - Liner
 - Sleeve
 - Pump
 - Exhaust valve

- Regulates volume
- Improves circulation
- No socks

- Seal in Liner
 - Liner with seal
 - Socket has valve

TFA suction

- Donning sleeve
- Valve

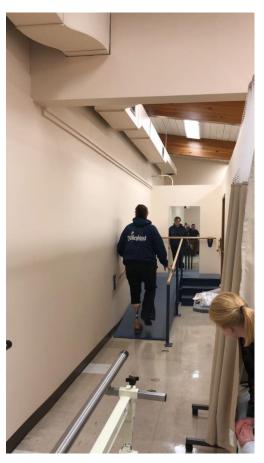
Hook or Hand/ Power?

Body powered

Externally powered

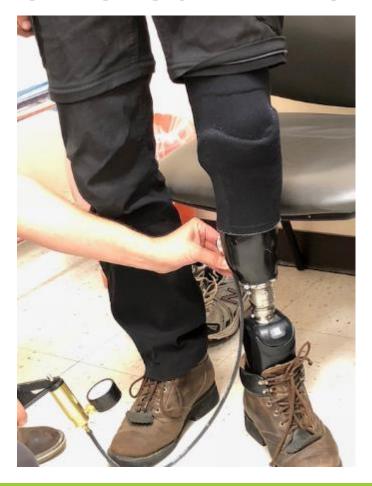
New and Exciting

Adjustable prosthetic sockets

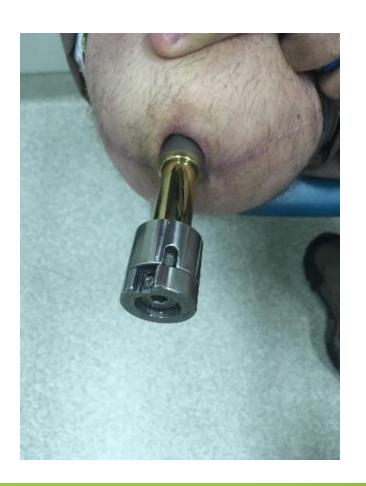

Future.... No!.... NOW

- Osseointegration
- "Bionics"
 - Powered knee
 - Powered ankle

Microprocessor Foot



Powered Ankle





Osseointegration

